Distinct phenotypes in zebrafish models of human startle disease☆
نویسندگان
چکیده
Startle disease is an inherited neurological disorder that causes affected individuals to suffer noise- or touch-induced non-epileptic seizures, excessive muscle stiffness and neonatal apnea episodes. Mutations known to cause startle disease have been identified in glycine receptor subunit (GLRA1 and GLRB) and glycine transporter (SLC6A5) genes, which serve essential functions at glycinergic synapses. Despite the significant successes in identifying startle disease mutations, many idiopathic cases remain unresolved. Exome sequencing in these individuals will identify new candidate genes. To validate these candidate disease genes, zebrafish is an ideal choice due to rapid knockdown strategies, accessible embryonic stages, and stereotyped behaviors. The only existing zebrafish model of startle disease, bandoneon (beo), harbors point mutations in glrbb (one of two zebrafish orthologs of human GLRB) that cause compromised glycinergic transmission and touch-induced bilateral muscle contractions. In order to further develop zebrafish as a model for startle disease, we sought to identify common phenotypic outcomes of knocking down zebrafish orthologs of two known startle disease genes, GLRA1 and GLRB, using splice site-targeted morpholinos. Although both morphants were expected to result in phenotypes similar to the zebrafish beo mutant, our direct comparison demonstrated that while both glra1 and glrbb morphants exhibited embryonic spasticity, only glrbb morphants exhibited bilateral contractions characteristic of beo mutants. Likewise, zebrafish over-expressing a dominant startle disease mutation (GlyR α1(R271Q)) exhibited spasticity but not bilateral contractions. Since GlyR βb can interact with GlyR α subunits 2-4 in addition to GlyR α1, loss of the GlyR βb subunit may produce more severe phenotypes by affecting multiple GlyR subtypes. Indeed, immunohistochemistry of glra1 morphants suggests that in zebrafish, alternate GlyR α subunits can compensate for the loss of the GlyR α1 subunit. To address the potential for interplay among GlyR subunits during development, we quantified the expression time-course for genes known to be critical to glycinergic synapse function. We found that GlyR α2, α3 and α4a are expressed in the correct temporal pattern and could compensate for the loss of the GlyR α1 subunit. Based on our findings, future studies that aim to model candidate startle disease genes in zebrafish should include measures of spasticity and synaptic development.
منابع مشابه
A review of the performance of zebrafish (Danio rerio) as a model organism in nanotoxicological research and its differences with other animal models
Today, nanotechnology is recognized as one of the leading sciences in the world, which manipulates atoms and molecules in order to produce valuable products. Extensive use of nanomaterials in various industrial sectors has increased the possibility of their diffusion in water bodies and the environment. Therefore, the study of toxicity of these substances is considered as one of the research ne...
متن کاملA zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity
Manganese (manganese ion; referred to as Mn) is essential for neuronal function, yet it is toxic at high concentrations. Environmental and occupational exposure to high concentrations of Mn causes manganism, a well-defined movement disorder in humans, with symptoms resembling Parkinson's disease (PD). However, manganism is distinct from PD and the neural basis of its pathology is poorly underst...
متن کاملThe Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching
The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibod...
متن کاملStem Cells Application in Modeling of Human Genetic Diseases
The use of animal models in modeling of human genetic disease has many advantages. In some cases, however, this method may not be applicable due to some limitations, such as differences in tissue composition, anatomy and physiology of humans and animals. Isogenic human disease models are a population of cells that are selected or engineered to model a specific genetic disease, in vitro. They ar...
متن کاملIntrinsic Properties of Larval Zebrafish Neurons in Ethanol
The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here ...
متن کامل